DeepLearning4J for Image Recognition Training Course

Overview

Deeplearning4j is an Open-Source Deep-Learning Software for Java and Scala on Hadoop and Spark.

Audience

This course is meant for engineers and developers seeking to utilize DeepLearning4J in their image recognition projects.

Requirements

  • Java

Course Outline

Getting Started

  • Quickstart: Running Examples and DL4J in Your Projects
  • Comprehensive Setup Guide

Convolutional Neural Networks 

  • Convolutional Net Introduction
  • Images Are 4-D Tensors?
  • ConvNet Definition
  • How Convolutional Nets Work
  • Maxpooling/Downsampling
  • DL4J Code Sample
  • Other Resources

Datasets

  • Datasets and Machine Learning
  • Custom Datasets
  • CSV Data Uploads

Scaleout

  • Iterative Reduce Defined
  • Multiprocessor / Clustering
  • Running Worker Nodes

Advanced DL2J

  • Build Locally From Master
  • Use the Maven Build Tool
  • Vectorize Data With Canova
  • Build a Data Pipeline
  • Run Benchmarks
  • Configure DL4J in Ivy, Gradle, SBT etc
  • Find a DL4J Class or Method
  • Save and Load Models
  • Interpret Neural Net Output
  • Visualize Data with t-SNE
  • Swap CPUs for GPUs
  • Customize an Image Pipeline
  • Perform Regression With Neural Nets
  • Troubleshoot Training & Select Network Hyperparameters
  • Visualize, Monitor and Debug Network Learning
  • Speed Up Spark With Native Binaries
  • Build a Recommendation Engine With DL4J
  • Use Recurrent Networks in DL4J
  • Build Complex Network Architectures with Computation Graph
  • Train Networks using Early Stopping
  • Download Snapshots With Maven
  • Customize a Loss Function

 

Leave a Reply

Your email address will not be published. Required fields are marked *